RoboCup-Rescue Simulator Manual
version 0 revision 4

The RoboCup Rescue Technical Committee

July 1, 2000

web page :
http://robomec.cs.kobe-u.ac.jp/robocup-rescue

mailing list :
rescue@symbio.jst.go.jp (japanese)
r-resc@isi.edu

Contents

1

2

Preface

Introduction

2.1 Nagata Ward Case for Prototype System

2.2 formulation e
2.2.1 one disaster simulation

2.3 disaster simulations Lo

2.4 simulation of agents behavior00

RoboCup-Rescue Simulation System

3.1 Structure of the Simulation System
3.2 Progress of the Simulation
3.3 World Modeling e
3.4 protocol
3.4.1 Commands
3.4.2 action command oL
3.4.3 sensory information
3.5 miscsimulator L. oL oo
Objects in the simulated world
4.1 World e
42 Civillan (agent)
43 Car(agent)
4.4 FireBrigade (agent) L
4.5 AmbulanceTeam (agent)
4.6 PoliceForce (agent)
4.7 Road (edge of road network)
4.8 Node (vertex of road network)
4.9 River (edge of river network) L.
4.10 RiverNode (vertex of river network)
4.11 Building (buildings or building sites)
412 Refuge
4.13 FireStation o ot
4.14 AmbulanceCenter
4.15 PoliceOffice
4.16 sending or receiving format of Object information
LongUDP
5.1 LongUDP packet format

1O OO Ut Wt

10
12
13
14
14
15
16

17
17
18
19
19
19
19
19
21
21
22
22
23
23
23
23
23

27

6

10

11

12

connection kernel

6.1 connection to GIS Lo
6.2 connection to Simulator
6.3 connection to Viewer
6.4 connection to Agents L L
6.5 sending Sensory information to agents
6.6 receiving commands from agents
6.7 command transfer to Simulators
6.8 receiving updated information from simulators
6.9 managing properties of agents oo L
6.10 sending update data to simulators,
6.11 sending update data to viewers L.
6.12 sending update datato GIS
6.13 time keeper oL

GIS Format
7.1 building.bin Lo

install of prototype

81 Unix version. v v v v v it e i e e e e e e e
82 Windows version
83 GISdata e e e
84 Tuning e
85 LogFiles

Programmer’s Guide
9.1 agent. e

FAQ

10.1 Architecture e e e e
10.2 Viewer e e e e e e
10.3 Performance

Discussion toward Version. 1

11.1 Architecture
11.2 GIS e
11.3 Utilities / Tools . . .« v v v o e e e e

11.4 performaceo

Proposals to Version 1
12.1 Architectureo

43
43

45
45
45
45
45
45

46
46

48
48
48
49

52
52
54
55
55

57

1 Preface

The RoboCup-Rescue Project is starting for the research of disaster mitigation,
search and rescue problems. Its objectives are

1. the robotics technology is applied to serious social problems to contribute
human social welfare,

2. new practical problems are proposed as challenges of robotics and Al to
initiate a novel research field, and

3. a new RoboCup competition is initiated in order to promote international
research collaboration.

RoboCup-Rescue simulator aims to be a comprehensive urban disaster simula-
tor, and is constructed on distributed computers.

e Heterogeneous intelligent agents such as fire fighters, victims and volun-
teers conduct search and rescue activities in this virtual disaster world.

e A real world interface integrates various sensor systems and controllers of
infrastructures in the real cities with the virtual world. Real-time simula-
tion is synchronized with actual disasters, computing complex relationship
between various damage factors and agent behaviors.

e A mission-critical man-machine interface provides portability and robust-
ness of disaster mitigation centers, and augmented-reality interfaces for
rescue parties in real disasters.

e It will provide a virtual-reality training function for the public. This
diverse spectrum of RoboCup-Rescue contributes to the creation of the
safer social system.

On April 30 1999, a meeting was held at a corner of the hall where people
were busy in preparing RoboCup Japan Open ’99. At the meeting, it was
decided to make a prototype of RoboCup-Rescue simulator by the end of 1999.
Form that time, many people have been joined this project and a prototype
will be releases this spring. We hope this manual will help more people join
RoboCup-Rescue project.

2 Introduction

The Hanshin-Awaji Earthquake killed more than 6,500 citizens in I{obe on
January 1, 1995. 80,000 wooden houses were fully collapsed and the number
of sufferers were more than 1 million. The damage of the basic infrastructures
exceeded 100 billion US dollars.

The experiences at the Hanshin-Awaji Earthquake concluded that the fol-
lowing functions were necessary to information systems for disasters.

1. Collection, accumulation, relay, selection, summarization and distribution
of necessary information.

2. Prompt support for action planning of disaster mitigation, search and
rescue.

3. Reliability and robustness of the system.

4. Continuity from ordinary times to emergency.

2.1 Nagata Ward Case for Prototype System

The RoboCup-Rescue project will support the functions for disaster and rescue
simulations. Necessary conditions for rescue project are considered by investi-
gating disasters in Nagata Ward, one of most damaged areas of the Hanshin-
Awaji Earthquake.

1. simulation period Rescue activities start when earthquakes occur, and
to be continued for years. The purposes of rescue activities change as re-
constructions continue. The rescue activities are classified into five stages.
Main purpose of rescue activities at the first stage is saving the victims.
The period to be simulated is set the first 72 hours, considering that after
that period survival rate decrease.

2. rescue agents: When earthquakes occurred, there are many calls for
asking fire men. So rescue simulation will be done by local rescue agents.
There were total 7 rescue agents — 5 firebrigates at the main fire office and
2 firebrigates at a branch fire office —.

3. space resolution: It is required to display things at the size of cars
in order to represent disaster situations or rescue activities. GIS data is
maintained with 5m mesh.

The area of 1.5 km? centered JR Nagata railway station is selected to be

a target for the prototype system from the amount of GIS data.

Replacing Nagata ward’s data with data for Los Angeles, Turkey, Taiwan,
RoboCup Rescue simulator will simulate the disaster respectively.

Table 1: Statistical Data of Nagata Ward (at 1994 Oct.1)

area 11,47 km?
household 53,284
population 130,466

2.2 formulation
2.2.1 one disaster simulation

Disaster situations changes every moment. The field called dynamic simulation
handles methods how to simulate changing situations in computers.
Dynamic simulation is modeled by following equations.

e(t) = fla(t) u(t)1) (1)
z(t+ At) = g(z(t),e(t)) (2)

t is time, At is a step size to forward the simulation discretely. 1 second or 1
mill second are used in computation.

x(t) is called status variable. It represents disaster situation at time ¢. for
example, the strength of fire, the speed of cars in traffic. Their values are
different at places, so x(t) forms a vector. Its elements are values at different
places, and the size becomes large as the simulated area become large.

u(t) is input at time t. The vector represents effects from the outside. They
represent amount of water sprayed from fire engines, the direction and strength
of wind, etc.

f is a function that describes how x(t) and u(t) at time ¢ effect the simulated
world, change its status. The effect calculated by function f is represented as
e.

g is also a function that describes the values of status x(t) at next time
(t + At).

2.3 disaster simulations

Each damage prediction (spread of fire, collapse of buildings, life line cut, etc.)
needs large computational quantity on the basis of large scale data. Each dam-
age has a relation to another. The activities of disaster mitigation, search and
rescue also have a tight relation to the reduction of damage. Collapse of build-
ings affects spread of fire, fire fighters extinguish the fire, the fire spread forces
to change the traffic condition, and traffic jams hamper the arrival of fire fighter
parties.
Such the mutual relationship among disasters should be reflected synchronously

to the conditions of simulation. The following equations represent the funda-

mental formation to calculate the effect of these disasters.

ei(t) = fi(z(t),u(t)t)
ez(t) = f2(w(t)7u(t)ﬂt) (3)

en(t) = fn((t), u(t),t)

Each f,, f,, -, f,, represents one disaster simulation, such as fire simulation or
traffic simulation. e, es,- -, e, are associated effects. The next time situations
are calculated by

z(t+ At) = g(@(t), ex(t), ea(t), -, en(t)). (4)

2.4 simulation of agents behavior

The word agent is used in various contexts. In this manual, agents are used to
refer autonomous entities in the simulated world, such as civilians, fire brigades,
ambulance teams, etc. They decide their actions according to situations: go to
refuges, ask for helps, extinguish fires, rescue victims, etc.

An agent’s behavior is described in a form of algorithms with strategy. They
are studied in fields like Artificial Intelligence, Robotics, Cognitive science, etc.
The behavior of an agent is described as

ea(t) = Fa(@a(t), s(2(1)), ua(t),). (5)

x, represents the agent’s ability such as knowledge, functions, the sense of value,
etc. eq(t) is the agent’s work to the outside world. s is a function that restricts
the input sensory data to data of circumstances around the agent. u,(t) is the
input to the agent from the outside world.

The agent’s action changes outside world (¢t + At).

z(t+ At) = g(x(t), er(t), ex(t), - -, en(t),
€41 (t), Y eaN(t)) (6)

The agent’s ability changes through communication with other agents, and
by its learning.

T (t+ At) = g (xa(t), s(x(t)), e1(t),ea(t), -,
en(t), ea1(t), -, ean(t)) (7)

These equations have the same structure as disaster simulations that are mod-
eled as physical phenomena. From methodological view of a comprehensive
disaster simulator, the simulations between disasters and agent behaviors are
not different. It is possible to simulate autonomous agents which move in the
simulated world in similar ways as to simulate disasters in the world.

3 RoboCup-Rescue Simulation System

3.1 Structure of the Simulation System

The RoboCup-Rescue simulation is built of a number of modules which com-
municate with each other using a protocol based upon UDP. The protocol is
generic and does not depend on any particular simulation algorithm. The mod-
ules consist of kernel, agents, component simulators, GIS (Geographical
Information System) and viewers (Fig. 1).

In the RoboCup-Rescue Simulation System, there exists only one kernel and
one GIS, and there may be more than one agent, component simulator or viewer.

The terms agent, simulator, modules are used in the followings definition.
And the term — module — is used to refer them.

[arsl
e LGS ™
Police Ofiice h ital
= g nospita =9 | 2D 3D viewer

M
i / i
1

\‘-_1@,1),.4
e Sl

Amubul anceTeam|
Sy

traff|c si mul at or ¢
pol i.ceForce
7

==% GgsSinterface
~P protocol between

Figure 1: Overview of rescue simulator

Agent

The agent module controls an intelligent individual that decides its own action
according to situations . Civilians, fire men, fire services and so on are agents !

ITerm — agent — is used to refer to agent module or to the individual, when there is no
ambiguity.

Individuals are virtual entities in the simulated world. Their “will” and actions
are controlled by the corresponding agents, which are the RoboCup-Rescue
Simulation System’s clients programs.

Kernel of simulator is a server program to the clients. The kernel module
checks the actions. For example, a fire-fighter agent decides that it should
extinguish a fire, but some trouble may prevent the fire plug from providing
water.

Currently, an agent is a unit like a family or a fire brigade in order not to
make the simulation system too large. In future, a single person (or a single
robot) will be represented by an individual agent.

Component simulators

Component simulators correspond to various simulation domains, such as earth-
quakes, fires, logistics or traffic jams. The component simulators, which are
plugged into the system, compute what will happen in the world, including
what the individuals in the world will do and what the effects of their actions
will be.

Only one component simulator can be plugged into the system for the same
simulation domain. For example, one fire simulator simulates fire disasters 2
in the area. It should be noted that component simulators themselves may be
participants of the simulation competition. The simulators compete with each
other from the accuracy of simulation and its real time performance.

GIS

The GIS module provides the initial configuration of the world, where roads,
buildings and individuals are located at the beginning of the simulation. It also
records the simulation log, thereby offline scrutiny of the simulation progress
will be possible.

Viewers
Viewers visualize the RoboCup-Rescue simulation via state-of-the-art computer
graphics. They may also be evaluated at the competition.

Kernel

The kernel controls the simulation process and facilitates information sharing
among the modules. In the future, the kernel should manage tens of thousands
modules and their communication in real time. This will be one of the most
challenging problems in the simulation system construction.

20f course, there is another way to separate the simulation space by ares. In that case,
different simulators simulate disasters at different areas.

request
for information

Vi ewer s

-

request ed
i nformati on
the initial configuration

of the world

conponent
as ker nel simul ators
I
the initial configuration knowabl e |
of the world information
agents

Figure 2: Communication at the beginning.

One module is represented by one process; however, it is possible to make
a single process represent more than one module by using multiple threads or
event-driven pseudo-processes. In particular, the inter-module communication
protocol was designed so that more than one agent module can share a socket,
since the number of agents will be large.

No two agents can communicate directly with each other. That is, agent
modules can communicate with each other only by way of the kernel module,
which accepts messages admissible in the communication protocol, as is the case
in the RoboCup simulation. Other kind modules may communicate directly with
each other; however, for the sake of modularity, plug-in component simulators
are expected to communicate with others only by way of the kernel.

3.2 Progress of the Simulation

At the beginning of the simulation (Fig. 2), the GIS sends the kernel the initial
configuration of the simulated world. The kernel then forwards this information
to the component simulators, and sends to each agent modules all their knowable
information.

In the prototype system one cycle taking one second of computer time sim-
ulates one minute of the real world time. The simulation cycle iterates the

10

request
for information

Vi ewers
| |
notification integrated
request ed about update simulation results
i nformation -
i ntegrated -—
simulation results sinul ation
results conmponent
as ker nel sinul ators
gat hered commands |
sensory |
information comrands

agent s

Figure 3: Communication among modules.

following steps (Fig. 3):

1. At the beginning of every cycle, the kernel sends sensory information to
each agent module. This sensory information consists of information that
the individual (controlled by the agent module) can sense in the simulated
world at that time. The most of this information is visual information.
The information may contain a certain amount of error as is the case in
the RoboCup soccer simulation. In the prototype system, the kernel sends
to agent modules data on all objects within a certain radius 3 .

2. Each agent module decides what actions the individual should take, and
send it to the kernel. This message is called command (explained in
section 3.4.1).

3. The kernel gathers all messages sent from agent modules, and broadcasts
them to the component simulators. Commands are sometimes filtered.
For example, commands sent by an agent module whose corresponding
individual is already dead are discarded. Since the simulation proceeds in
real time (sixty times faster than the real world clock, however), the kernel

3 At present, the radius is 50m. The value will be set in config file.

11

ignores commands that do not arrive in time. Only accepted commands
are broadcast to the component simulators.

4. The component simulators individually compute how the world will change
based upon its internal status and the commands received from the kernel.
These results are then sent back to the kernel.

5. The kernel integrates the results received from the component simulators,
and broadcasts them to the GIS and the component simulators. The
kernel will only integrate those results which are received within a certain
deadline. The kernel then increases the simulation clock, and notifies the
viewers about the update.

6. The viewers request the GIS to send updated information of the world, and
display visually the information according to various evaluation criteria.

7. The GIS keeps track of the simulation results, and sends the viewers the
information they request.

3.3 World Modeling

Component simulators may model the simulation world by their own method-
ologies. For example, some fire simulators may split the world into 50-meter
planar grids, and some other fire simulators may have a 3D model of the town
and houses. However, it is not easy for other modules to adapt to every variant
or upgrade of the component simulator models. Therefore, the inter-module
communication protocol is based upon a simple planar graph structure model
with Euclidean metrics. For example, roads are described as edges of a graph
with various useful information such as road width, and whether there is a
median strip or sidewalks, associated with each edge. Each module has to com-
municate with others based upon this simplified world model, whether or not it
uses a more sophisticated or finer-grained model.

The simple world model of the prototype system consists of various kinds
of objects located on the graph, each of which has a certain number of prop-
erties. For example, an edge object that represents a road on the map has
properties such as width and IDs of adjoint node objects, while a node object
has its coordinates and IDs of edges it is connected to. Node objects represent
crossroads, outstanding curves or linkage points between roads and building
objects.

Modules do not send all the properties of each object every time; sending
only necessary or limited part of properties of objects. For example, sensory
information sent by the kernel to each agent contains only information which
the individual can sense visually, aurally within its vicinity. Simulation results
sent to the kernel from component simulators contain only the properties that

12

will change at the next clock. However, all properties are only broadcast at the
beginning of the simulation.
Objects in the prototype system other than edges and nodes are as follows:

Building : a building, which may collapse, obstruct a road, or bury persons
alive. Its “entrance” property indicates a node in the graph where road is
connected to the entrance of the building.

Civilian : a family which has encountered the disaster, and is being evacu-
ated. It has properties such as coordinates, on what it is, HP (hit point),
stamina, damage, etc.

Car : a car which is driven by a civilian. The properties are the same as
civilian’s properties.

Fire brigade : team that extinguishes fires. It has properties such as water
quantity it can access, hose length it has, etc. other than those of civilians.

Fire station : station of fire brigades. It is a kind of building with other
specific properties which the agent can control. It may control their fire
brigades by means of wireless telephone, radio, or such.

Ambulance team : team that rescues persons buried alive and carries in-
jured persons to hospitals. It will have properties representing its current
capability.

Ambulance center : center of ambulance teams, similar to the fire station.

Police force : team that tries to open roads obstructed by debris, fissures or
other kinds of obstacles.

Police office : center of police forces, similar to the fire station.

3.4 protocol

The protocol specifies communications among modules — kernel, agents, simu-
lators, GIS and viewers —. One kernel component and one GIS component exist
in the simulator, while components of other kind may exist. Agent components
represent civilian ¢ , fire fighters .etc. who move autonomously in the simulated
are. GIS(Geographical Information system) provides all geographical data such
as roads, bridges, houses, etc. of the world. Disasters occurred in the simulated
world or their effect on the civiilan lifetraffics are simulated by simulator compo-
nents. Viewer components display situation of the world And kernel component
serves data sharing and controls the simulators.

The protocols is represented according to RFC1014 (XDR: External Data
Representation Standard). Ox is a prefix to represent hexadecimal notation.

4Tdeally an agent is a human, however in prototype an agent is a group such as a family,
a fire brigade.

13

Table 2: commands in agent’s protocol.

Command | Information Transfer | Function

Initialization

init | agent — kernel | Initialization of agents

Action Commands

move agent — kernel Motion of agent body

act agent — kernel General term for disaster mitiga-
tion action, implemented ones are
extinguish, rescue, load, unload,
clear.

say agent — kernel (agent) | Auditory information transmission

tell agent — kernel (agent) | Via transmission line

Sensory information

see agent «— kernel Visual information acquisition

hear agent — kernel (agent) | Auditory information acquisition

listen agent «— kernel (agent) | Via transmission line

3.4.1 Commands

The agent modules make decision of their own behaviors according to diverse
objectives. The objectives are mainly disaster mitigation. They search the
victims, rescue them, evacuate them to safe places, provide some foods, etc.
Their actions are transmitted to the distributed kernels to renew the world’s
conditions. Visual and auditory information is also exchanged via the kernel.
A local language is defined for the agent-agent communication. An example of
agent protocol is shown in Table 2 5.

3.4.2 action command

e move Route
Move along Route. Route is an ID list consisting of connected roads and
nodes.

e say Target Message

Say Message to an individual whose ID is Target. Message is any string
that is allowed by the protocol specification.

5Commands in this table were designed at June 1999. All of the commands were not
implemented in version 0. The commands that have been implemented really are explained
in section 9. Please refer to the section at programming.

14

o tell Message

Broadcast Message by radio or other means.

o extinguish Target

Extinguish a fire. Target is the ID of a burning building, or else.

e rescue Target

Rescue an individual buried alive. Target is the ID of the individual.

e load Target

Take on an individual. Target is the ID of the individual. Only one
individual can be accommodated in the ambulance.

e unload

Drop the individual.

e clear Target

Restore a blockaded road so that cars can pass. Target is the ID of the
road.

3.4.3 sensory information

The agent modules in the prototype system receive the following sensory infor-
mation:

e sense Receiver Time Self Objects

Inform the agent modules of visual and auditory information sensed by the
corresponding individual. Receiveris the ID of the individual controlled by
the agent module. Time indicates the current time. Selfis the information
about the individual. Objects is the information about the objects sensed
at the time. It is a list of the information whose format is the same as

that of Self.

The format of Selfis: ID Property Property ... ID is an ID number of the
object. The format of Property is: PropertylD Value. PropertylD is the
number which denotes the kind of the property. Value is the value of the
property.

e hear Receiver Time Sender Message

Inform the agent module of a message said or told by another individual.
Time indicates the current time. Sender is the ID of the individual that
said or told Message.

15

3.5 miscsimulator

At March 2000 when Rescue simulator was tested, various kinds of themess
were discussed . (see.section 11) The role of kernel is one of the themes. In
discussing it, it is concluded that the management of modules and the manage-
ment of agents’ status are different. A new simulator — miscellaneous simulator
(miscsimulator) — is introduced to play the role of civilan agents status. The
misc-simulator has been implemented from kernel release verion 0.23.

For example, when the civilian is in the collapsed house or it suffers from
fire, the misc-simulator sets properties fo civilians. The present algorithm is
a liner model: hp = damage x T + 10000, where damage coefficcinet are -100
(in house collapsed) and -1000(fire), T is elapsed time. When the civilian pass
the refuge, its damage is set 0. And, a firebrigade is an agent derived class of
civilian. A firebrigade also suffers from damages at paresent.

The followings are items of miscsimulator handles

e commands: (see 3.4.2)

load
unload
rescue buriedness of Target is decreased by 1.

stretch A firebrigade pulls a fire hose to a fireplug. At present, fireplugs
are not specified, so this one is reserved for the future.

move

clear
e property (see 4.2)
hp Initilal value is 10000. The value is decreased by damage every step.

Value ’0’ means dead.

damage The value is set when the civilian suffers from fire or building
collapses. (Tentatively, 40 is set in a case of fire and 400 is set in a
case of building collapses, at June 2000.) When the civilian goes to
a refuge, the value is set ’0’.

buriedness

16

4 Objects in the simulated world

This chapter describes objects in the simulated world. Kernel models the simu-
lated world as a collection of objects. The objects are families, fire fighters and
also houses and roads. The houses and roads are represented as a graph, and
house objects and road objects are nodes and edges of the graph. Other compo-
nents should use the model, the collection of objects, when they communicate
data with kernel component.

At Kernel version.0, the following objects 7 are implemented. A unique ID
(a positive integer) is assigned to each object

4.1 World

The real longitude and latitude are used to locate positions of objects in GIS.
The position data of simulated are translated into a new coordinate the origin
of which is specified to a point in the simulated area.

property value comment

startTime integer: Simulation start time. (The
—0x7FFFFFFF ~ | time is elapsed minutes from
0x7FFFFFFF Jan. 1. 1970 0:0 AM..)

longitude integer: The longitude of the new co-
—0x7FFFFFFF ~ | ordinates origin. The east
0x7TFFFFFFF longitude is positive, west

longitude is negative. The
unit is second degree.

latitude integer: The latitude of the new co-
—0x7FFFFFFF ~ | ordinates origin. The north
0x7TFFFFFFF latitude is positive, south

longitude is negative. The
unit is second degree.

windForce integer: 0 ~ | current force of the wind.
Ox7FFFFFFF unit 0.001 meter/hour.

windDirection integer: O~ | current direc-
1295999 tion of the wind. The pos-

itive direction along y axis
is 0, the value moves to
1295999=360*60*60-1

seconds.

The properties — hp (hit point) and damage — are set by misc-simulator
(see. setion 3.5).

6 As internal models, the components may use any kind of models.
"Objects and properties marked by * are preserved for future use, and not used in the
protocol explained later.

17

4.2 Civilian (agent)

property

value

comment

position

positionExtra

stamina

hp

damage

buriedness

direction

positionHistory

object ID or 0

integer: 0
Ox7FFFFFFF
integer: 0
Ox7FFFFFFF
integer: 0
Ox7FFFFFFF
integer: 0
Ox7FFFFFFF
integer: 0
0x7FFFFFFF
integer: 0
1295999

a list of IDs

18

ID of an object that the civilian
is on or in. When the civilian is
on a road, ID is the road’s ID. It
is in a building, ID is the build-
ing’s ID. It is in an ambulance,
ID is the ambulance’s ID, etc.
ID=0 means it is on/in noth-
ing. Notice: Following the po-
sttion properties must not reach
itself. (A directed graph made
from position properties closed
paths.)

When the civilian is on the road,
this property signifies the posi-
tion on the road. The value is
the distance form the head of
the road. The range of the val-
ues is from 0 to the length of the
road. The civilian is on/in other
object, the value is set 0.

At this version, stamina remains
constant. In future version,
the agent’s stamina will be de-
creased by taking actions, and
the agent cannot take an action
that causes the value of stamina
minus. Kernel will restore a
specified value every cycle.
Kernel decreases this property’s
value by damage every cycle. 0
value is dead.

This property shows the neces-
sity of medical treatment. The
value is decreased by treatment.
This property shows how much
the civilian is buried in the col-
lapse of buildings. The value
is how many people are re-
quired to save it form the col-
lapse. The value more than one
means he cannot move by him-
self. Default initial value is 0O,
and earthquake simulator up-
dates the value.

The positive direction along y
axis is 0, and the value moves
to 129599=360*60*60-1 seconds
counter clockwise.

A list of IDs, such as houses or
roads, that it passed during the
previous one cycle. The order is
chronological.

4.3 Car (agent)

Car agents are cars driven by civilian agents. Their properties are the same one
as civilian’s.

4.4 FireBrigade (agent)

FireBrigade agents have the following properties in additionto civilian agent’s
property.

property value comment
waterQuantity | integer: 0 ~ | This property shows how
0x7FFFFFFF much water is in the tank.
stretchedLength | integer: 0 ~ | This property shows how
0x7FFFFFFF long the hose is pulled to the
nearest.

4.5 AmbulanceTeam (agent)

AmbulanceTeam agents have the same properties as civilian agent.

4.6 PoliceForce (agent)

PoliceForce agents have the same properties as civilian agent. They restore
collapsed roads to states that cars or civilian can pass.

4.7 Road (edge of road network)

Roads are represented with a graph which edges are roads and nodes are cross-
ings.

19

property value comment
head node ID or Build- | ID of an end point of the
ing ID road.
tail node ID or Build- | ID of the other end point.
ing ID
length integer: 0 ~ | The length of the road, the
O0x7FFFFFFF unit is mm.
roadKind integer: 0 ~ | The vales, (0x01, 0x02,
0x7FFFFFFF 0x04, 0x08), indicate the
kind of road, (elevated road,
bridge, tunnel, road for
emergency), respectively.
carsPassToHead integer: 0 ~ | The number of cars that
O0x7TFFFFFFF passed during the previous
one cycle from tail to head.
carsPassToTail integer: 0 ~ | The number of cars that
O0x7TFFFFFFF passed during the previous
one cycle from head to tail.
humansPassToHead integer: 0 ~ | The number of human cars
O0x7TFFFFFFF that passed during the pre-
vious one cycle from tail to
head.
humansPassToTail integer: 0 ~ | The number of human that
O0x7FFFFFFF passed during the previous
one cycle from head to tail.
width integer: 0 ~ | The width of the road, the
Ox7TFFFFFFF unit is mm.
block integer: 0 ~ | The width of a part of the
O0x7TFFFFFFF road where cars or human
cannot pass by collapse of
buildings, cracks etc.,, the
unit is mm.
repairCost integer: 0 ~ | This property shows how
0x7TFFFFFFF many people are required to
restore the road to the nor-
mal that block is 0.
medianStrip Oorl The value is 1 when there is
a median strip, otherwise 0.
linesToHead integer: 0 ~ | The number of traffic lanes
Ox7TFFFFFFF form tail to head.
linesToTail integer: 0 ~ | The number of traffic lanes
Ox7FFFFFFF form head to tail.
widthForWalkers integer: 0 ~ | The width of a part of the
O0x7TFFFFFFF road for pedestrians.

20

4.8 Node (vertex

of road network)

property value comment
X integer: 0 ~ | x coordinate
0x7FFFFFFF
y integer: 0 ~ | y coordinate
O0x7TFFFFFFF
edges IDs of roads or | a set of ID of objects, roads or
buildings building, that connect to this
node.
signal Oorl The value is 1 when there are
signals, otherwise 0.
shortcuToTurn list of intergers: O | In a case of left (right) traffic
~ Ox7TFFFFFFF system: A list of the number of
short cut for left (right) turn.
The numbers are in the order of
the edge.
pocketToTurnAcross | list of integers: 0 ~ | Under left (right) traffic system:
0x7TFFFFFFF A list of the numbers of pockets
and length for right (left) turn.
The numbers are in the order of
the edge.
signal Timing list of integers: O ~ | A list of the time periods of sig-

0x7FFFFFFF

nal for every road in the edge.
The number is triplet for blue,
yellow, and blue for right turn.
The numbers are in the order of
the edge.

4.9 River (edge of river network)

property value comment

head node ID of river | ID of an end point of river
network edge.

tail node ID of river | ID of the other end point.
network

length integer: 0 ~ | length of riveredge. unit is
Ox7TFFFFFFF mm.

21

4.10 RiverNode (vertex of river network)

property value comment
X 0 ~ OxTFFFFFFF | x coordinate
integer:
y 0 ~ Ox7TFFFFFFF | y coordinate
integer:
edges River IDs a set of IDs that connects this
RiverNode.

4.11 Building (buildings or building sites)

property value comment

X integer: 0 ~ | x coordinate, unit: mm (the
Ox7FFFFFFF same as the unit of road).

y integer: 0 ~ | y coordinate, unit: mm (the
0x7FFFFFFF same as the unit of road).

floors integer: 0 ~ | the number of floors
Ox7FFFFFFF

buildingAttributes integer: 0 ~ | values - 0, 1, 2 - represent the
0x7FFFFFFF kind of building, - a wooden

house, a steel frame house,
a reinforced concrete house -
respectively.
ignition Oor1l The value is 1 for the building
that Fire simulator sets fire to,
otherwise 0.

fieryness integer: 0 ~ | How much it burns
Ox7TFFFFFFF

brokenness integer: 0 ~ | The value indicates how much it
0x7FFFFFFF collapsed. 0: no damaged, 25:

partly damaged, 50: half col-
lapsed, 100: fully collapsed.

entrances ID of road mnet- | A list of ID of objects that the

work’s Node entrances of the building con-
nect to.

buildingShapelD integer: 0 ~ | figure ID of building
Ox7TFFFFFFF

buildingCode integer: 0 ~ | structure code
0x7TFFFFFFF

buildingAreaGround | integer: 0 ~ | area of the first floor
Ox7FFFFFFF

buildingAreatotatal | integer: 0 ~ | total floor area
Ox7TFFFFFFF

buildingApexes list of coordinates coordinate of polygon’s vertexs

22

4.12 Refuge

A king of buiding that civilians take refuge in. It has the same properties of
building object.

4.13 FireStation

A buiding that can act autonoumously, namely, people in the building send
command to FireBrigate. It has the same properties of building object.

4.14 AmbulanceCenter

A king of buiding that can act autonoumously, namely, people in the building
send command to AmbulanceTeam. It has the same properties of building
object.

4.15 PoliceOffice

A king of buiding that can act autonoumously namely, people in the building
send command to PoliceOfiice. It has the same properties of building object.

4.16 sending or receiving format of Object information

The following formats are used at sending or receiving information of objects.

/*XDR*/
enum Property {
PROPERTY_NULL = O,

PROPERTY_START_TIME = 29,
PROPERTY_LONGITUDE = 30,
PROPERTY_LATITUDE = 31,
PROPERTY_WIND_FORCE = 32,
PROPERTY_WIND_DIRECTION = 33,

PROPERTY_X
PROPERTY_Y

3,
4,

PROPERTY_DIRECTION = 27,
PROPERTY_POSITION = 6,
PROPERTY_POSITION_HISTORY = 207,
PROPERTY_POSITION_EXTRA = 7,

PROPERTY_STAMINA = 9,
PROPERTY_HP = 10,
PROPERTY_DAMAGE = 11,
PROPERTY_BURIEDNESS = 23,

23

PROPERTY_FLOORS = 14,
PROPERTY_BUILDING_ATTRIBUTES = 15,
PROPERTY_IGNITION = 48,
PROPERTY_BROKENNESS = 17,
PROPERTY_FIERYNESS = 16,
PROPERTY_ENTRANCES = 21,
PROPERTY_BUILDING_SHAPE_ID = 49,
PROPERTY_BUILDING_CODE = 50,
PROPERTY_BUILDING_AREA_GROUND = 51,
PROPERTY_BUILDING_AREA_TOTAL = 52,
PROPERTY_BUILDING_APEXES = 53,

PROPERTY_WATER_QUANTITY = 25,
PROPERTY_STRETCHED_LENGTH = 26,

PROPERTY_HEAD 12,
PROPERTY_TAIL 13,
PROPERTY_LENGTH = 24,

PROPERTY_ROAD_KIND = 19,
PROPERTY_CARS_PASS_TO_HEAD 34,
PROPERTY_CARS_PASS_TO_TAIL 35,
PROPERTY_HUMANS_PASS_TO_HEAD = 36,
PROPERTY_HUMANS_PASS_TO_TAIL = 37,
PROPERTY_WIDTH = 38,
PROPERTY_BLOCK = 22,
PROPERTY_REPAIR_COST = 39,
PROPERTY_MEDIAN_STRIP = 40,
PROPERTY_LINES_TO_HEAD = 41,
PROPERTY_LINES_TO_TAIL 42,
PROPERTY_WIDTH_FOR_WALKERS = 43,

PROPERTY_EDGES = 242,

PROPERTY_SIGNAL = 44,
PROPERTY_SIGNAL_TIMING = 194,
PROPERTY_SHORTCUT_TO_TURN = 192,
PROPERTY_POCKET_TO_TURN_ACROSS = 193,

};

/* a set of ID */
union IDs switch(int id) {
case O:
void;
default:
IDs next;

24

¥

/* a list of (property’s kind , its value) */
union Properties switch(Property property) {
case PROPERTY_NULL:
void;
default:
int value;
Properties next;
case /* value in a range {0x80, OxBF} */:
opaque value<>;
Properties mnext;
case /* value in a range {0xCO, OxFF} */:
IDs value;
Properties next;

};

/* Object’s kind */
enum Type {
TYPE_NULL = O,

TYPE_CIVILIAN = 232,
TYPE_FIRE_BRIGADE = 233,
TYPE_AMBULANCE_TEAM = 234,
TYPE_POLICE_FORCE = 235,

TYPE_ROAD
TYPE_NODE

168,
200,

TYPE_RIVER = 169,
TYPE_RIVER_NODE = 201,

TYPE_BUILDING = 176,
TYPE_REFUGE = 184,
TYPE_FIRE_STATION = 185,
TYPE_AMBULANCE_CENTER = 186,
TYPE_POLICE_OFFICE = 187

};

/* an Object */

struct Object {
Type type;
int id; /* ID of this object */
Properties properties;

};

/* Object more than zero */

25

union Objects switch(Type type) {
case TYPE_NULL:
void;
defualt:
int id; /* ID of this object */
Properties properties;
Objects next;
3

It is possible to send the object’s part by sending only properties that
changed at the previous cycle. The data is said to be complete when it con-
tains all properties. Future version ups may change the properties of objects,
so the followings are recommended when receiving complete data.

1. When some of received properties are unknown, they are to be neglected.
2. Receiving an object at first time, their values should be set initial values.
There are some notes on receiving data:

1. ID of an object is uniquely set by kernel, however, it does not mean that
IDs are the same to other agent modules. If ID is the same to all agent
modules, victim agents can be easily identified among agent modules.

2. The values of properties may not be correct when agents receive them.
Because it may not be true that the data is always correct in disastered
cites. (The values are correct at version 0.)

26

5 LongUDP

Communication between kernel and other components are done mostly by UDP.
The data from GIS is a big one, and its length may be larger than 64kbyte that
UDP can not handle. RoboCup-Rescue protocol provides LongUDP protocol
to transmit a big packet. LongUDP divides the big packet into small parts, adds
8byte-header to each part, and send them by UDP. The header is the following
format. The data in the head is represented in network byte order.

OFFSET | DATA COMMENT

0 0x0008 | magic number.

2 ID ID number of LongUDP packet.

4 number | this integer shows where this UDP packet is in
LongUDP. (0 ~ total—1).

6 total total packet numbers in LongUDP packet.

LongUDP uses IP address and port number as well as UDP. The IP address
and port number are the same ones as UDP. ID number in the LongUDP is
assigned not to be the same as other LongUDP’s ID. The long packet is unified
by

1. collecting LongUDP packets with the same ID number,
2. after receiving total packets, sorting them in number ascending order,
3. concatenating them without header part.

The length of divided small parts except the last one (its number=total-1) is
a multiple of four. The length of divided small parts is bigger than eight, i.e.,
they have data besides header part.

When total packets are not read for some period, some UDP packets may
be lost. It is recommended to stop receiving the LongUDP packet. Otherwise a
wrong Long UDP may be constructed later, because kernel creates ID number
cyclically.

5.1 LongUDP packet format

A LongUDP packet has block more than 0. The block is composed of header
and body.

/*XDR*/

enum Header {
HEADER_NULL = O,
AK_CONNECT = 0x10,
AK_ACKNOWLEDGE = 0x11,
AK_REST = 0x80,

27

};

AK_MOVE = 0x81,
KA_CONNECT_OK = 0x50,
KA_CONNECT_ERROR = 0x51,
KA_SENSE = 0x52,
SK_CONNECT = 0x20,
SK_ACKNOWLEDGE = 0x21,
SK_UPDATE = 0x22,
KS_CONNECT_OK = 0x60,
KS_CONNECT_ERROR = 0x61,
KS_COMMANDS = 0x62,
KS_UPDATE = 0x63,
VK_CONNECT = 0x20,
VK_ACKNOWLEDGE = 0x21,
KV_CONNECT_OK = 0x60,
KV_CONNECT_ERROR = 0x61,
KV_UPDATE = 0x63,
GK_CONNECT_OK = 0x77,
GK_CONNECT_ERROR = 0x77,
KG_CONNECT = 0x77,
KG_ACKNOWLEDGE = 0x77,
KG_UPDATE = 0x63,

union LongUDPPacket switch(int header) {
case HEADER_NULL:

void;

default:

opaque body<4294967294>;
LongUDPPacket next;

/* body<OxFFFFFFFE> */

OFFSET | HEX BYTES | COMMENTS

0 00 00 00 81 header=0x81

4 00 00 00 10 length of body=16
8 00 00 02 56 body

12 00 00 01 34

16 00 00 01 6F

20 00 00 00 00

24 00 00 00 81 header=0x81

28 00 00 00 10 length of body=16
32 00 00 02 57 body

36 00 00 01 55

40 00 00 01 A8

44 00 00 00 00

48 00 00 00 00 header=HEADER_NULL

28

The length of body may be OxFFFFFFFF in the following example when
kernel received the message. In this case, the length of body is calculated from
the remaining packet’s length.

OFFSET | HEX BYTES | COMMENTS

0 00 00 00 81 header=0x81

4 00 00 00 10 length of body=16
8 00 00 02 56 body

12 00 00 01 34

16 00 00 01 6F

20 00 00 00 00

24 00 00 00 81 header=0x81

28 FF FF FF FF | length of body=16
32 00 00 02 57 body

36 00 00 01 55

40 00 00 01 A8

44 00 00 00 00

48 00 00 00 00 header=HEADER_NULL

The body’s content varies as its header. Connecting modules with different
version may add extra data the body as explained later. The modules are
recommended to neglect them.

Or broadcasting data cuases receiving packets for other module will cause
similar situations. It also is recommended to neglect the packet for which the
value of the header may be out of the specified values.

29

6 connection kernel

As explained in section 3.2, kernel plays an important role in exchanging data.
Starting simulation, kernel connects GIS, simulators, viewers, and agents in
order. Before connecting agents, other modules are connected to kernel. Kernel
starts simulation after all objects are connected.

During simulation, kernel repeats the following steps.

1. (from second cycle) send sensory information to agents,
. (from second cycle) receive commands from agents,
. forward them to simulators,
. receive updated data from simulators,

. update properties of agents,

. send the updated data to reviewers,

2
3
4
5
6. send updated properties to simulators,
7
8. send the updated data to reviewers,

9

. advance time one cycle.

At 2 and 4 step, kernel proceeds the next step in 0.5 seconds. Otherwise,
finishing the step proceeds the next step. In the following section, the steps are
explained more detailed.

6.1 connection to GIS
Kernel requires connection with GIS via port 6001.
header = KG_CONNECT

Its body has the following format.

/*XDR*/
struct KGConnect {
int version; /* must be O */
/* if there is extra data added, they should be neglected. */

};

A UDP packet sent from kernel for connection has the following format.

OFFSET | HEX BYTES | COMMENTS

0 00 00 00 7?7 header=0x??

4 00 00 00 04 length of body=4

8 00 00 00 00 version=0

12 00 00 00 00 header=HEADER_NULL

30

GIS returns GK_CONNECT_OK when the connection succedes, returns
GIK_CONNECT_ERROR in a case of failure. Kernelreturns KG_ ACKNOWLEDGE
when it receives GK_CONNECT _OK.

GIS sends GK_CONNECT _OK again, when it does not receive KGLACKNOWLEDGE

after a specified time 2.

GK_CONNECT_OK’s header and body are the followings.

header = GK_CONNECT_OK

/*XDR*/

struct GKConnectOk {
Objects map;

};

The object map contains information of all objects in simulated world, and
represents the initial status of simulation.
GIK_CONNECT_ERROR’s header and body are the followings. The string

reason shows why it failed.
header = GK_CONNECT_ERROR
/*XDR*/

struct GKConnectError {

string reason<255>;

3
KG_ACKNOWLEDGE'’s header and body are the followings.
header = KG_ACKNOWLEDGE
/*XDR*/
struct KGAcknowledge {
void;

};

The following table shows addresses for sending and receiving.

header send form send to

KG_CONNECT any GIS (port 6001)

GK_CONNECT.OK any sender of KG.CONNECT

GK_CONNECT_ERROR | any sender of KG_.CONNECT

KG_ACKNOWLEDGE any sender of
GK_CONNECT_OK

8Now the time is set 1 minute. At future version, the value is set in the config file. This
situation is true for KSCCONNECT_OK, KV_.CONNECT_OK, KA_LCONNECT_OK cases.

31

6.2 connection to Simulator

Simulators require connection with kernel via port 6000.
header=SK_CONNECT

Its body has the following format.

/*XDR*/
struct SKConnect {
int version; /* must be 0 */

};

A UDP packet for connection has the following fromat.

OFFSET | HEX BYTES | COMMENTS

0 00 00 00 20 header=0x20

4 00 00 00 04 length of body=4

8 00 00 00 00 version=0

12 00 00 00 00 header=HEADER_NULL

Kernel returns KS_CCONNECT_OK when the connection succeeds, otherwise
returns KS_.CONNECT _ERROR. Simulators returns SK_ACKNOWLEDGE, it
receives KS_CONNECT _OK.
Kernelsends KS_CONNECT _OK again, when it does not receive SK_ ACKNOWLEDGE

after a specified time.
KS_CONNECT_OK’s header and body are the followings.

header = KS_CONNECT_OK

/*XDRx/
struct KSConnectOk {

Objects map;

/* if there is extra data added, they should be neglected. */
¥

The object map provides all information of simulated world that kernel has.
KS_CONNECT_ERROR’s header and body are the followings. The string
reason shows why it fails.

header = KS_CONNECT_ERROR

/*XDR*/

struct KSConnectError {
string reason<255>;

/* if there is extra data added, they should be neglected. */
;

SK_ACKNOWLEDGE'’s header and body are the followings.

32

header = SK_ACKNOWLEDGE

/*XDR*/
struct SKAcknowledge {
void;

};

The following table shows addresses for sending and receiving.

header send from send to
SK_CONNECT any kernel (port 6000)
KS_CONNECT_OK any sender of
SK_CONNECT
KS_CONNECT_ERROR | any sender of
SK_CONNECT
SK_ACKNOWLEDGE sender of | sender of
SK_CONNECT KS_CONNECT_OK

6.3 connection to Viewer

Viewer requires connection with kernel via port 6000.
header=VK_CONNECT

Its body has the following format.

/*XDR*/
struct VKConnect {
int version; /* must be 0 */

};

A UDP packet for connection has the following fromat.

OFFSET | HEX BYTES | COMMENTS

0 00 00 00 20 header=0x20

4 00 00 00 04 length of body=4

8 00 00 00 00 version=0

12 00 00 00 00 header=HEADER_NULL

Kernelreturns KV_CONNECT _OK when the connection succedes, otherwise
returns KV_.CONNECT_ERROR. Viewer returns SK_ ACKNOWLEDGE, when
it receives KS_CONNECT_OK.

Kernelsends KV_CONNECT _OK again, when it does not receive VK_ACKNOWLEDGE
after a specified time.

KV_CONNECT_OK’s header and body are the followings.

33

header = KV_CONNECT_OK

/*XDR*/
struct KVConnectOk {

Objects map;

/* if there is extra data added, they should be neglected. */
;

The object map provides all information of simulated world that kernel has.

KV_CONNECT_ERROR’s header and body are the followings.

header = KV_CONNECT_ERROR

/*XDR*/
struct KVConnectError {

string reason<255>;

/* 1if there is extra data added, they should be neglected. */
¥

The string reason shows why it fails.
VK_ACKNOWLEDGE’s header and body are the followings.

header = VK_ACKNOWLEDGE

/*XDR*/

struct VKAcknowledge {
void;

¥

The following table shows addresses for sending and receiving.

header send from send to
VK_CONNECT any kernel (port 6000)
KV_CONNECT_OK any sender
VK_.CONNECT
KV_CONNECT_ERROR | any sender of
VK_CONNECT
VK_ACKNOWLEDGE sender of | sender of
VK_CONNECT KV_CONNECT_OK

6.4 connection to Agents

Agents require connection with kernel via port 6000

header=AK_CONNECT

34

Its body has the following format.

/*XDR*/

struct AKConnect {
int version; /* must be 0 */
int temporaryId; /* any value */

int agentType;
3

Temporaryld’s value can be set to any value by a corresponding agent module.
agentType is the kind of agent that is connecting. The value is one of the
followings.

agentType | agent’s kind

1 Civilian

2 FireBrigade

4 FireStation

8 AmbulanceTeam
16 AmbulanceCenter
32 PoliceForce

64 PoliceOffice

A UDP packet for connection a civilian agent has the following fromat.

OFFSET | HEX BYTES | COMMENTS

0 00 00 00 20 header=0x20

4 FF FF FF FF | length of body

8 00 00 00 00 version=0

12 00 00 00 00 temporaryld=0

16 00 00 00 01 agentType=Civilian

20 00 00 00 00 header=HEADER_NULL

Kernel returns KA_CONNECT _OK when the connection succeeds, returns
KA_CONNECT_ERROR in a case of failure. Simulators returns AK_ACKNOWLEDGE,
it receives KA_CONNECT_OK.

Kernelsends KA_CONNECT _OK again, when it does not receive SK_ ACKNOWLEDGE
after a specified time. KA CONNECT _OK’s header and body are the follow-
ings.

header = KA_CONNECT_OK

/*XDR*/

struct KAConnectOk{
int temporaryId; /* value handed over by AK_CONNECT */
int id; /* ID of itself */
Object self; /* Object controlled by this agent */

35

Objects map; /* information that Object self knows before disaster */
/* if there is extra data added, they should be neglected. */
¥

temporaryld is the value handed over by AK_CONNECT. id is an ID of the agent
object. Kernel sends the agent Object map information that kernel creates from
GIS data. Kernel sends it in a binary form ® KA_CONNECT_ERROR'’s header
and body are the followings.

header = KA_CONNECT_ERROR

/*XDR*/
struct KAConnectError {
int temporaryId; /* value handed over by AK_CONNECT */
string reason<255>;
/* if there is extra data added, they should be neglected. */
};

temporaryld is the value handed over by AK_CONNECT. The string reason shows
why it fails.
AK_ACKNOWLEDGE'’s header and body are the followings.

header = AK_ACKNOWLEDGE

/*XDR*/
struct AKAcknowledge {

int id; /* ID of an Object that is controlled by this agent. */
3

id in AK_ACKNOWLEDG is the same value as id in KAConnectOk.

The following table shows addresses for sending and receiving.

header send from send to
AK_CONNECT any, can share with | kernel (port 6000)
other agents.
KA_CONNECT_OK any sender of
AK_CONNECT
KA_CONNECT_ERROR | any sender of
AK_CONNECT
AK_ACKNOWLEDGE sender of | sender of
AK_CONNECT KA_CONNECT_OK

9Note: The value of version must be set 0. version = 1 is allowed only for kernel developers.
When agent developers set verion 0, they should know (1) kernel omits data conversion and
data transmission in order to make time required for connection short, (2) the usage ’version
= 1’ is not guranteed for future.

36

6.5 sending Sensory information to agents
Kernel sends KA_SENSE to agents every cycle.

header = KA_SENSE

Its body has the following format.

/*XDR*/
struct KASense {
int id; /* ID of itself */
int time; /* current time */
Object self; /* information of itself */
Objects objects; /* information of surroundings */

/* if there is extra data added, they should be neglected. */
¥

id shows the Object that should receive sensory information. time is the current time
of simulated world. self is information on itself and objects is information on current
surroundings.

The following table shows addresses for sending and receiving.

header send from send to

KA _SENSE | any sender of AK_CONNECT

Agents must commands in reply to receiving KA_SENSE.

6.6 receiving commands from agents

command is a block with a header that is over 0x80 and under OxFF. The first 4
byte of body is ID of object that a sender controls. The usage of commands are
future topics. Basically, commands will be used for communication among modules
and will be transfered to simulators. The following table shows addresses for sending
and receiving,.

header send from send to
0x80 ~ 0xFF | sender of | sender of
AK_CONNECT KA_CONNECT_OK

6.7 command transfer to Simulators

Kernel gathers commands sent from agents into one block, and sends it to all simula-
tors. KSCommands’s header and body are the followings.

header=KS_COMMANDS

37

/*XDR*/
union CommandBodies(int senderId) {
case O:
void;
default:
opaque unknown<>;
CommandBodies next;

};

union PackedCommands(Header command) { /* command */
case HEADER_NULL:

void;
default:

int remainder ToNextCommand;

CommandBodies commandBodies;

PackedCommands next;

};

struct KSCommands {

int time;

PackedCommands commands;

/* if there is extra data added, they should be neglected. */
};

time is the current time of simulated world. commands is information of all commands
that are sent by agents during one cycle. commands is divided into three components:
header, the first four bytes of body, and the rest of body. They are assigned to
command, senderld, unknown. Commands with the same header are unified into one
command. remaindertoNextCommand is the length of commandBodies in byte.

When three commands (Fig. 4) are sent from agents, kernel sends a packet (Fig.
5).

The following table shows addresses for sending and receiving,.

header send from send tp
KS_COMMAND | any sender of
SK_CONNECT

Agents must SK_UPDATE in reply to receiving KS_.COMMANDS.

6.8 receiving updated information from simulators

Kernel receives updated information from simulators. Its body has the following for-
mat.

header=SK_UPDATE

38

OFFSET | HEX BYTES | COMMENTS
0 00 00 00 80 header=0x80
4 00 00 00 10 length of body
8 00 00 01 00 sender i1d

12 00 00 01 01

16 00 00 01 02

20 00 00 01 03

24 00 00 00 80 header=0x80
28 00 00 00 10 length of body
32 00 00 02 00 sender id

36 00 00 02 01

40 00 00 02 02

44 00 00 02 03

48 00 00 00 81 header=0x81
52 00 00 00 10 length of body
56 00 00 03 00 sender i1d

60 00 00 03 01

64 00 00 03 02

68 00 00 03 03

72 00 00 00 00 header=HEADER_NULL

Figure 4: three commands sent from agents

/*XDR*/
struct SKUpdate {
Objects differences;

};

differences is the updated information from simulators. Kernel updated the prop-
erties of objects in the simulated world.
The following table shows addresses for sending and receiving.

header send from send to

SK_UPDATE | sender of SK_.CONNECT | sender of KS_.CONNECT_OK

6.9 managing properties of agents

Kernel decreases hp, increases stamina.

6.10 sending update data to simulators

Kernel sends to all simulators data for updating their simulation world. Its body has
the following format.

39

OFFSET | HEX BYTES | COMMENTS

0 00 00 00 62 header=0x62

4 00 00 00 5C length of body

8 00 00 00 10 time=16

12 00 00 00 80 command=0x80

16 00 00 00 2C remaindertoNextCommand
20 00 00 01 00 senderld

24 00 00 00 0C length of unknown=12
28 00 00 01 01 unknown

32 00 00 01 02

36 00 00 01 03

40 00 00 02 00 senderId

44 00 00 00 0C length of unknown=12
48 00 00 02 01 unknown

52 00 00 02 02

56 00 00 02 03

60 00 00 00 00 senderld=0

64 00 00 00 81 command=0x81

68 00 00 00 18 remaindertoNext Command
72 00 00 03 00 senderId

76 00 00 00 0C length of unknown=12
80 00 00 03 01 unknown

84 00 00 03 02

88 00 00 03 03

92 00 00 00 00 senderld=0

96 00 00 00 00 command=0x00

100 00 00 00 00 header=HEADER_NULL

Figure 5: a unified packet sent from Kernel to Simulators

40

header=KS_UPDATE

/*XDR*/
struct KSUpdate {

int time;

Objects differences;

/* if there is extra data added, they should be neglected. */
¥

time is the current time of simulated world. differences is information for updating
simulation world.
The following table shows addresses for sending and receiving.

header send from send to

KS_UPDATE | any sender of SK_.CONNECT

6.11 sending update data to viewers

Kernel sends to viewers updated data of the simulated world. Its body has the
following format.

header=KV_UPDATE

/*XDR*/
struct KVUpdate {

int time;

Objects differences;

/* if there is extra data added, they should be neglected. */
35

time is the current time of simulated world. differences is information for updating
simulation world.
The following table shows addresses for sending and receiving,.

header send from send to

KV_UPDATE | any sender of VK_CONNECT

6.12 sending update data to GIS

Kernel sends to GIS updated data of the simulated world. Its body has the following
format.

header=KG_UPDATE

41

/*XDR*/
struct KGUpdate {
int time;

Objects differences;
/* if there is extra data added, they should be neglected. */

};

time is the current time of simulated world. differences is information for updating

simulation world.

The following table shows addresses for sending and receiving.

header

send from

send to

KG_UPDATE

any

sender of GK_CONNECT_OK

6.13 time keeper

kernel advance the time one unit in the simulated world.

42

7 GIS Format
7.1 building.bin

This section explians GIS data form. This data format '® is used for data echange

among modules in Version.

connect at first, and make Building objects cited in 4.11.

At version.0, GIS data is based on the 19 standard coordinate (19_s). 19_s is the
coordinate used in Japan Geographical Survey Institute. The unit in 19_s is meter,
however, mili_meter is used in RoboCup-Rescue in order to make the data type is
integer. The transformations from (x, y) coordinate to (x19, y19) in 19_s are

0. Modules receive the data from Kernel when they

219 = (y + A2)/1000, y19 = (z + A3)/1000.

data format:

data type

contents

comment[unit]

Al
A2
A3

Ad
Adl ~ Adp

unsigned long
long
long

unsigned long

the number in 19_s

offset value of 195 (x
coordinate)
offset value of 19.s (y

coordinate)

total points number
information of each
building

record format (data of a buildin)

10Tt is different from the data format used in GIS module.

43

data of Kobe is 5 standard co-
ordinate V MilIE A: A

[mm]
[mm]
the number of buildings (p)

cf. record format described
below

data type

contents

comment [unit]

R1
R2
R3

R4

R5
R6

R7

R8
R9
R10

R10-1 ~ R10-
q

R11

R12

R13

R14

R15

R15-1 ~ R15-
2r

unsigned long
unsigned long
unsigned long

unsigned long

unsigned long
unsigned long

unsigned long

unsigned long
unsigned long
unsigned long

unsigned long

unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long

the size of this record
ID number

standard point (x
coordinate)
standard point (y
coordinate)

the number of floors

kind of building

ignition flag

fieryness

brokenness

the number of connetion
nodes

the ID of node connect-
ing the entry of this
building
buildingShapelD
buildingAreaGround
buildingAreatotatal
buildingAttributes
buildingApexes
coordinates of
buildingApexes

[*4 byte]
[mm]
[mm]

[foor]

0: it has floors less than 3. 1:
more than 4 floors.

The value is 1 for the building
that Fire simulator sets fire to,
otherwise 0.

initial value = 0

initial value = 0

q (at present no input, set de-
fault 0)

(at present, no input)

the same as R2

[*0.01 m?] cf. 4.11

[*¥0.01 m?] cf. 4.11

0,1,2cf 411

recf. 4.11

[mm]odd number: x-corinate,
even number: y-coordibate

44

8 install of prototype

The prototype version is available at URL: http://ne.cs.uec.ac.jp/ koto/rescue. Ex-
pand the archived file under your specified directory. The followings are from READ-

ME file of Prototype Ver.0.20.

8.1 Unix version
Requirements :

1. C++, socket library, Java Development Kit 1.1

How to run Make and execute sh files in RUN directory, from 0 to 5 in order. There
are two batch files which are numbered 2. Click sun_viewer or ms_viewer, if you

want to use SUN’s JavaVM or MicroSoft’s JavaV M.

8.2 Windows version
Requirements :

1. Windows 95/98/NT (including Winsocks2)..

2. Java Runtime Environment 1.1 (or corresponding Microsoft Java VM).

How to run Execute batch files in RUN folder, from 0 to 5 in order. There are two
batch files which are numbered 2. Click sun_viewer or ms_viewer, if you want to

use SUN’s JavaVM or MicroSoft’s JavaVM.

Source Code The source codes are open for Window version.

8.3 GIS data

In Data folder (directory), there are three subdirectories:

10 : 1/10 model of Nagata Words,

100 : 1/100 model,

1000 : 1/1000 model.

With replacing files, the simulated world will change its size.

8.4 Tuning

In config.txt, there are parameters to change the conditions of simulators.

pacakets are lost frequently, set send_udp_wait larger values.

8.5 LogFiles

Kernel outputs logfiles of execution by deleting # marks in config.txt.

45

When

9 Programmer’s Guide

9.1 agent
This section describes how to use commands in section 3.4.1 when you program agents.
(An example of source code will be open by Mr. Ohta at this April.)

move: CIVILIAN, FIRE_ COMPANY, AMBULANCE_TEAM, POLICE_FORCE use

this command to move and Traffic simulator takes care of it.

header=AK_MOVE
struct AKMove {

u32 id; // sender agent ID
IDs route; // a list of objects of Node, Building, etc. ,
// which the sender passes through.
I
say: All agents use this command to say with natural voice and kernel takes care of
it.

header=AK_SAY
struct AKSay {

u32 id; // sender ID
string message; // message
ID target; // ID of a target which is said by id.

};

tell: All agents use this command to say with communication medias such as tele-
phone, wireless phone and kernel takes care of it.

header=AK_TELL
struct AKTell {

u32 id; // sender ID
string message; // message
ID target; // ID of a target which is said by id.

I
extinguish: FIRE_COMPANY use this command to sprinkle water and fire simulator

take care of it after kernel checks.

header=AK_EXTINGUISH
union KAExtinguishNozzles switch(ID target) {
case O:
void;
default:
u32 direction; // O degree is the direction of Y-axis and
// to 1295999 minutes in counterclockwise directionm.
u32 positionX; // the position of the nozzle,

u32 positionY; // it is not so far from the car’s position.
u32 quantity; // the amount of water from one nozzle:
// 1 unit = 0.001m*m*m/min

KAExtinguishNozzles next;

46

};

struct KAExtinguish {
u32 id; // sender ID
KAExtinguishNozzles nozzles;

I
rescue: AMBULANCE_TEAM use this command to rescue buried people and mas-

cellaneous simulator take care of it.

header=AK_RESCUE
struct AKRescue {

u32 id; // sender ID

ID target; // ID of a target which is rescued by id.
};

load: AMBULANCE_TEAM use this command to load the injured into an ambulance

and miscellaneous simulator take care of it.

header=AK_LOAD
struct AKLoad {

u32 id; // sender ID

ID target; // ID of a target which is loaded by id.
};

unload: AMBULANCE_TEAM use this command to unload the injured from an
ambulance and maiscellaneous stmulator take care of it.

header=KA_UNLOAD
struct AKUnload {
u32 id; // sender ID
// No target, because only one ID is on the ambulance.

};
unload: POLICE_FORCE use this command to restore the blockaded road so that

cars can pass and mauscellaneous simulator take care of it.

header=AK_CLEAR
struct AKClear {

u32 id; // sender ID
ID target; // ID of a target which is restored by id.
3
The header has the following values.
AK_REST = 0x80; AK_MOVE = 0x81; AK_LOAD = 0x82;
AK_UNLOAD = 0x83; AK_SAY = 0x84; AK_TELL = 0x85;
AK_EXTINGUISH = 0x86; AK_RESCUE = 0x88; AK_CLEAR = 0x89;

47

10 FAQ
10.1 Architecture

1. Hi, I have two concerns:

1)It says that all communication between agents goes through the kernel. Won’t
this become a bottleneck when the number of agents increase? Especially since
the next step is to make each individual an agent and not a team as an agent
as it is now

2)Also kernel waits for a fixed time to get back the commands issued by the
agent. It filters these and send them to the simluators. What about those
commands that come in late? Also when the simulators return their results
to the kernel it integrates these results and returns it to the GIS and to the
simulators. Here to it waits for only a fixed period of time. What happens if
the simulator’s reply reaches the kernel after it has begun integrating the rsults
from the other simulators. Won’t a incorrect picture of the world be created
and sent to both the gis and the individual agents? Thanks for your time.

(Ranjit Nair, Jan. 2000)

e Yes, we also have these concerns. These problems about distributed kernel
and asyncronous simulaton will be central issues of the next kernel (version
1). Join us for discussion!

(Ikuo Takeuchi)
e For the short term plan, rescue simulation project will proceed.

Phase 0 (— 2000.3)
Feasibility study of a disaster-agent simulator for a very simple agents
and environments.

Phase 1 (— 2001.4)
Simulator development of limited disaster and limited agents. The 1st
research evaluation conference.

Phase 2 (— 2005.4)
Simulator development of larger-scale disaster simulator, heteroge-
neous agents.

This manaul is a document at Phase 0. Designing the simulation at Phase
1 must take care of the problems. They invole your suggested points, Ikuo’s
points and, GIS format, viewer, time-management among simulators....

(Tomoichi Takahashi)

10.2 Viewer

1. This is a snapshot of what I obtained on running the sample simulation(kernel-
unix-0.17). Please confirm that this was what it was supposed to look like? I
was expecting fancier graphics. Isn’t the simulation supposed to be modelled
on a city block in Kobe? Will future releases have this? When can we expect
these releases.

(Ranjit Nair, Jan. 2000)

48

Table 3: Objects in test environments [number (byte size)]

scale | 1/1000 | 1/100 | 1/10 | 1/1

area size (m) | 31 [160] 521 | 2217
static objects

road 4(60) 125(1,875) 818(12,270) 9,776(146,540)
node 5(35) 119(833) 765(5,355) 9,143(64,001)
building 1(13) 99(1,287) 778(10,114) 9,357(121,641)
subtotal 10(108) | 343(3,995) | 2,361(27,739) | 28,276(332,282)
autonomous agents

Civilian 1(8) 8(64) 76(608) 934(7,472)
Ambulance Team 1(8) 2(16) 5(40) 5(40)

Fire Brigade 1(10) 2(20) 10(100) 10(100)
Police Force 1(8) 2(16) 10(80) 10(80)
subtotal 4(34) 14(116) 101(828) 959(7,692)
total sum 14(142) | 357(4,111) | 2,462(28,567) | 29,235(339,974)

e The snapshot is correct. In kernel-unix-0.17, the kernel is official, but the
other modules are just sample to test the kernel. We released version 0.19.
It contains a semi-official GIS and displays a small area in Kobe. But it
has a bug about endians and needs little endian architecture machine.

(Tetsuhiko Koto)

10.3 Performance
1. Where can I get test Environment?

e There are four test GIS data of different scales. at URL:
http://ne.cs.uec.ac.jp/ koto/rescue. The GIS data are Nagata area with
1/1000, 1/100, 1/10 and 1/1 scale (Table 1).

Figure 6 shows the 2-D viewer of 1/10 model. The entries in the first row
is the length of displayed area. The edge of displayed area is 521m. The
second group of rows in Table 1 are static objects, and the third group is
autonomous agents.

The green spots are buildings, the yellow spots show the ignition pointes
and the white lines are roads. The color of buildings turns to red when the
building burns, and turns to blue when fire brigades extinguish the fires.
The points on the lines represent autonomous agents.

The numbers in the entry are the numbers of objects, and the byte size
(in parentheses). (Tomoichi Takahashi)

2. How much machine power is necessary to run test environment?

e I don’t know exactly. Table 4 shows the machine specifications that we
tested at 3/5/2000. We used seven machines connected through 100M
network. (Tomoichi Takahashi)

49

File
time=12 2470 objects screen width = 21,0 m

Figure 6: 2D viewer of 1/10 scale.

3. What about the test ? Did it work smoothly?

e At 1/1000, 1/100, 1/10 scale, it worked as we expected. At 1/1 scale, it
did not work. The followings are the reasons:

(a) At the initialization phase, every module gets the GIS data. The GIS
data of 1/1 scale is 330KB, and is sent via UDP/IP. This causes packet
lost during receiving them. And as the number of modules plugged in,
the total transmission time and the number of lost packets increase.
And the time for initialization becomes more than 30 minutes.

(b) During simulation, kernel sends the changes of circumstances to agents
by calculating within the limited area. At present, the cost of this
calculation is proportional to the number of agents. The increase
from 76 agents to 934 agents is hard for the present kernel.

e For the above problems, the followings are commented:

(a) As far as the initial step, the transmission of GIS data should be via
TCP instead of UDP in order not to miss packets. (Tadokoro, Aida,
March/2000)

(b) The modules are divided into two categories. The one category is
disaster simulator, and the other is agent. The disaster simulators
change the world itself under the complete data, while the agents

50

Table 4: machine environments for test

components CPU Memory 0S
1 | kernel P3-600x2 512 WindowsNT /FreeBSD
2 | GIS P3-733 512 WindowsNT
Simulator
3 | Fire P3-733 512 WindowsNT
4 | Road blockade P3-733 512 WindowsNT
5 | Building blockade P3-733 512 WindowsNT
6 | Traffic P3-733 512 Turbo Linux
Agents
7 | Civilian P3-600 512 FreeBSD
Fire Linux
Ambulance Linux

move in the world with incomplete data. The number of disaster
simulators is fixed, and the number of agents is variable.

In order to keep the cost in spite of the increase of the agent’s number,
there is a proxy between kernel and agents. (Ituki Noda, March/2000)

51

11 Discussion toward Version. 1
(

11.1 Architecture
1. Time management: fixed RTK '" or flexible RTK? (Yoshitaka Kuwata, 2000/2/13)

At version0, one simulation step corresponds to one minute in the simulated
world. 4,320 = 60 * 24 * 3 simulation steps become 3 days. Agents or simula-
tors calculate according to their own models, and the required times are different
from each other. For example, one minute is good for fire simulations, while it
is too long for traffic simulations. Because a car moves more than one block in
one minute. RTK(60) may make impossible to transfer protocols among agents
and simulators within one minute. It causes the simulation is out of the real
one.

Simulator Real World Simulator Real World

RTK
10 100

1 @1000

Figure 7: Real-Time Knob(RTK)

2. is calculation guaranteed to complete ? (Yoshitaka Kuwata, 2000/2/13)

(a) why guarantee to complete within one step is necessary?
Under RTK(60) system, calculation of both agents and simulators are ex-
pected to finish within one step. Agents in RoboCup soccer simulation
leagues are soccer players. In the soccer games, whether the players run
after deliberation, dash for the ball at first, or else are the problem of
soccer agents themselves. This situation applies also to agents of Rescue
project simulation.

However, disaster simulations in rescue simulation should complete its cal-
culation in one simulation step to keep the simulated world consistent. If
a fire simulator does not finish in one step, the simulated fire does not
spread out. Is it possible for disaster simulators to complete their calcula-
tion in one simulation step when the simulated world becomes larger than
the assumed world at version 0 ?

Incremental algorithm or anytime algorithm are proposed for real time
simulations. Applying these algorithms to simulators that have been de-
veloped already is difficult. At least, some efforts including the computer

1 The ratio of simulation time and real time is referred to Real-Time Knob (RTK) after
this. Version 0 is RTK(60) system, it means that the ration is 60.

52

power up should be made that the modules of disaster simulation return
the result.

(b) real-time / non real-time simulators ? (Yoshitaka Kuwata, 2000/2/13)
Real-time disaster simulators are important. On the other hand, logis-
tics planning or city-reconstruction planning by government offices require
precision of simulation rather than its speed.

In future, the non real-time simulators will be plugged in. The rescue
simulation should support interfaces for both real-time and non real-time
simulators.

Question Is it possible for kernel to control the RTK of simulators? If so, given
a table where the granularity of simulators are listed, the kernel indicates
RTK’s value to simulators. When a simulator fails to return its results in
one simulation step, the value of RTK will be set larger one. (Kento Aida,
2/15)

Answer As mechanism of simulators, I think it is possible to control the RTK,
although programming simulator takes efforts. For example, see Boddy,
M., & Dean, T. “An analysis of time-dependent planning.”, in proceed-
ings of the sixth national conference on Artificial Intelligence(AAAT) , pp.
49-54, 1988 or Boddy, M. & Dean, T. “Solving time-dependent planning
problem”, in eleventh international joint conference on Artificial Intelli-
gence (IJCAI), pp. 979-984, 1989.

When more people enter the community of rescue project, I think it is a
good policy to make their existing simulation programs plugged in easily.
So, the realistic and simple way is that kernel or some module will manage
the characteristics of the newly plug in simulator, isn’t it ? But it does
not solve our problem, because we must set all RTK to the highest value.

(Yoshitaka Kuwata, 2/15)

3. Communication cost, performance of kernel(Yoshitaka Kuwata, 2000/2/13)
The communication size of GIS data and the amount of kernel computation will
be bottleneck of execution. (Ranjit’s comment in page 48.) The followings will
be considered:

e distribution of GIS functionally and/or regionally,
e distribution of kernel module,

e event driven type kernel. (Takeuchi’s commnet in page 55, Kuwata’s com-
ment in page 57).

Question One of distribution ways is to divide them into domains like DNS.
There will be one kernel and one GIS within one domain. In this case, the
division that makes dependence among domains little is desired. (Kento

Aida, 2/15)

Answer I agree with your suggestion basically, however, there are many kinds
of information linked over domains. (The followings are my guess:) When
a fire occurs at the boundary of domains, a fire simulation must send data
to both kernels of domains. In a domain, there is usually one kernel. When

53

fires occur at the domain, the kernel divides the domain dynamically into
smaller ranges and forks other kernels to manage the small ranges. This
is an interesting research theme, but this seems to be difficult. Anyway,
more detailed analysis will be needed. (Yoshitaka Kuwata, 2/15)

Question Next idea is to use simulators more than one that simulate the disas-
ter of the same kind in a domain. By using some simulators, when the load
of simulating one disaster, for example fire, in one domain, the load will
be distributed to each simulator. By this method, distributed simulation
inter-domains and intra-domain will be done. (Kento Aida, 2/15)

Answer In HLA(High Level Architecture), Federation architecture defines dy-
namic hierarchical structure. (Can anyone follow ?) (Yoshitaka Kuwata,

2/15)

Question The other idea is to assign simulators flexibly according to the de-
mand of simulation power. One kernel of a domain that thinks the power of
simulation insufficient asks kernels of other domains to support it. (Kento

Aida, 2/15)

Answer For that, a meta-controller that manages kernels is required. Im-
plementation using CORBA is a practical solution, isn’t it? (Yoshitaka
Kuwata, 2/15)

Question The kernel will do the following functions to realize the above func-
tions.
e synchronization and communication among domains,
e segmentation of a domain and allocation of simulators.
The kernel needs the data-sheet on the speed of machine-computation, the

amount of simulation-time, etc. Adding these functions makes the kernel
big, so it may be good that adding functions are separated from kernel.

- T - +
| kernel |---|scheduler|
e + A +
I /
+-———- + /
| GIS |--
O +

(Kento Aida, 2/15)

Answer This figure is a similar to my figure (cf. Fig. 8). The scheduler in
the above figure manages kernel tasks, while the scheduler in my figure

controls RTK. (Yoshitaka Kuwata, 2/15)

11.2 GIS
1. More GIS ? (Yoshitaka Kuwata, 2000/2/13)

At version 0, the GIS module maintains geographical data as a whole, and other
modules acess the data via the kernel. At future versions, there will be requests

54

to make use of GIS data at more detailed levels or from different points. For
satisfying these requests, GIS data will increase in size and types. Distributed
GIS modules must be considered for the increase of data. Of course, distribution
of data will need consistency among them.

Management of agents such as civilian, cars (Yoshitaka Kuwata, 2000/2/13)
The GIS module keeps record of not only static objects such as buildings but
also civilian agents, car agents that move. Management of objects that move
or don’t move should be separated from computation efficiency. This separate
management of building objects and civilian will be useful when several GIS
modules will be used.

11.3 Utilities / Tools

1.

2.

Snapshot, rollback, rerun:
The following functions are desired to debug programs, to analyze behaviors:

Snapshot / Rollback : save all data on agents, simulations, GIS data, and
kernel status at a specified time point.

Rerun : restore the save data and start the rescue simulation from the point.
In this case, persistence of objects should be managed. (2) (Yoshitaka
Kuwata, 2000/2/13)

interoperabilty:

Rescue project simulation is executed on computers connected to network. Pro-
tocol data format and data structure are desired to be independent of program-
ming languages and machines.

Compatibility is desirable for version upward. (Yoshitaka Kuwata, 2000/2/13)

11.4 performace

1.

2.

network

At the interface test at Feb.13, the simulation environment (computers and
network) seems to work as hard as possible even to simulate 1/10 model of
Nagata ward. I think a network traffic team necessary to check what kind of
packets are on the network. (Ikuo Takeuchi, 2/14)

kernel load:

Think a fire occurs at a mesh. Is it sufficient to notify the fire to agents in the

neighbor meshs ? The fire event should be announced more widely than 8m,
especially for fire agents, vision range is insufficient for fire agents. The points
that I think more important than the previous one are (1) the load in kernel
seems to be high, and (2) fire agent can see only 8m ahead.
At present, Kernel divides the simulated world into meshes with 10m grid, and
calculates eight neighbor meshes around each agent at every step. It is better
to program that the changes in the world should be notified from agents. Then
there is no need for kernel to check eight neighbor meshes around an agent that
says nothing. (Ikuo Takeuchi, 2/14)

55

3. event driven programming style is better than object based programming style

When several fires occur in a mesh, the events are sent respectively or together
? The events occurred in a mesh should be unified and selected according to
the world model of kernel. Kernel will send the information to agents in farther
mesh according to the model. For example, explosion event will be announced
simultaneously to agent in wide range, while moving cars may be within a few
meshes.

In RoboCup rescue simulation where at most fires occurs at 10,000 points (the
number of buildings), the event driven programming style requires less compu-

tation than agents based programming style by that a lot of agents look around
every time. (Ikuo Takeuchi, 2/14)

56

12 Proposals to Version 1
12.1 Architecture

1. management of simulation time & separation of objects management: (Yoshi-

taka Kuwata, 2000/2/13)

Kernel is divided into two modules, RT-scheduler and Command(Protocol)-
Interpreter to reduce the amount of communication.

kernel

RT 4 Command
Scheduler—- Interpreter

Simulator Agent

Figure 8: Division kernel’s role into two modiles

e Command(Protocol)-Interpreter

Command-Interpreter will handle communication between agents and mod-
ules.

o RT-scheduler

Kernel will pass message to the GIS module with event driven scheduler.
The basic flow is shown in fig 10.

Event-Queue will be manipulated to gurantee the simulation,
(a) limit the number of requests from agents,

(b) give priority of events,

(c) cut down the evens.

2. Management of distributed objects (Yoshitaka Kuwata, 2000/2/13)
CORBA?

57

References

[1] Hiroaki Kitano, Satoshi Tadokoro et al., RoboCup-Rescue: search and rescue in
large-scale disasters as a domain for autonomous agents research, Proc. IEEE SMC,

1999.

[2] Satoshi Tadokoro, Hiroaki Kitano et al., The RoboCup-Rescue concept, The
RoboCup-Rescue Committee, 1999.

58

Event-Queue Command Interpreter Agent

Simulation + Execute Event’“’@
Time }< Sim
| New Event
Scheduling

t+

Figure 9: Model of event-driven simulation

| SET initial Event-Queue |
P —|
|SCRT Event - Queue chronol ogical |y |

|SELECT an Evént from Event - Queue |

Y

EXECUTE t he Event
(generation of new Events,
kill of old Events)

|

Figure 10: Basic handling of event-queue

Agent A
Command Interpreter

‘10:00 dig Building 999 @

Event-Queue

10:10 say "Hello" to agent B @
10:30:00 dig complete
10:00:05 -
\sa. "Hi to Agent B
Agent B
10:10:05 "Hello" from Agent A
10:30:00 T >

t+

Figure 11: Communicaiton between agents via. Command Interpreter

59

